TOTAL SYNTHESIS OF (±)-MAYSINE AND (±)-N-METHYLMAYSENINE

Minoru ISOBE*, Masato KITAMURA, and Toshio GOTO

Laboratory of Organic Chemistry, Faculty of Agriculture, Nagoya University

Chikusa, Nagoya 464

Maysine $(\underline{1})$ and N-methylmaysenine $(\underline{2})$, as congeners of the ansa-macrocyclic antitumor agent, maytansine, were synthesized from a common intermediate 3.

Ansa-macrocyclic lactams, maysine $(\underline{1})$ and N-methylmaysenine $(\underline{2})$, are congeners of antitumor agent, maytansine. We herein report the first stereoselective synthesis of $\underline{1}$ and a new total synthesis of $\underline{2}$ from a common synthetic intermediate $(\underline{3})$, which was described in our separate paper on maytansinol.

The intermediate $\frac{3}{2}$ was stereoselectively epoxidized in three steps to $\frac{4}{2}$, $\frac{4}{2}$ which was further treated with methyl diethylphosphonoacetate (2.5 equiv. at -78°C and then at rt for 12 hr) and with a mixture of 1N KOH-THF-EtOH (2:5:5 at rt for 17 hr) to provide the unsaturated acid $\frac{5}{2}$ (85 %)[δ_{CDCl_3} 6.00 & 6.86, H-2 & 3, d, J= 16]. Cyclization on n-Bu₄N⁺ salt of $\frac{5}{2}$ worked with 2-mesitylenesulfonyl chloride (25 equiv.) and diisopropylethylamine (25 equiv.) in benzene at 40°C to give 90% crude $\frac{6a}{2}$ [m/z 663 (M+)]. The silyl group was removed with n-Bu₄NF (5 equiv.) in a mixture of MeCN-THF (2:1) at 50°C for 20 hr to give $\frac{6b}{2}$ which was treated with p-nitrophenyl chloroformate (5 equiv.) and pyridine (5 equiv.) in dry CH₂Cl₂ at rt for 2 hr. Then, it was mixed with excess NH₃-MeOH⁵ at -78°C (the temp. being raised to rt in 1 hr) to provide the ketal urethane $\frac{6c}{2}$ (83 %). When $\frac{6c}{2}$ was treated with a mixture of AcOH-THF-H₂O (2:1:1 at 35°C for 2 hr), the dimethylketal group was hydrolyzed to provide the corresponding ketone 7, which was

N-Methylmaysenine

(2)

detectable on silica gel tlc [Rf values of $\underline{6c} = 0.65$, $\underline{7} = 0.55$ and $\underline{1} = 0.40$ /EtOAc, respectively]. ⁶ Alkalization by addition of ammonia to the reaction mixture accomplished the formation of the heteroring in 71% overall yield from the ketal $\underline{6c}$ to produce $\underline{1}^2[\delta \ 2.68(H-5,d,J=9.5 \ Hz)]$.

N-Methylmaysenine was also synthesized similarly from the intermediate $\underline{3}$ which was first treated with methyl diethylphosphonoacetate to give $\underline{8a}$ (98%). Hydrolysis of $\underline{8a}$ with 12N KOH (dioxane-MeOH 2-1) at 90°C for 12 hr provided the amino acid $\underline{8b}$ in 66% yield. The lactam was formed under the same reaction condition as above case to give $\underline{9}$ [70% m/z 647 (M+)], and deprotection of $\underline{9}$ with camphorsulfonic acid in aq. MeOH afforded $\underline{10}$. The carbamate ring was formed with p-nitrophenyl chloroformate (10 equiv.) and pyridine (9 equiv.) in THF at rt for 10 min and then with NH₃-MeOH at 0°C for 30 min to afford $\underline{2}$ [δ 5.49(H-5, d, J= 11.0), 7.22(H-3, d, J= 15 Hz)]³ in 73% yield.

The racemic $\underline{1}$ and $\underline{2}$ were identical with authentic samples. 7

References

- 1. Isobe M., Kitamura M., Goto T., J. Am. Chem. Soc., 104, 4997 (1982).
- 2. Meyers A.I., Comins D.L., Roland R.M., Henning R., Shimizu K., J. Am. Chem. Soc., 101, 7104 (1979).
- a) Corey E.J., Weigel L.O., Chamberlin A.R., Lipschutz B., J. Am. Chem. Soc., <u>102</u>, 1439 (1980);
 b) Meyers A.I., Roland D.M., Comins D.L., Henning R., Fleming M.P., Shimizu K., J. Am. Chem. Soc., 101, 4732 (1979).
- 4. Isobe M., Kitamura M., Mio S., Goto T., Tetrahedron Lett., 23, 221 (1982).
- 5. Letsinger R.L., Ogilvie K.K., J. Org. Chem., 32, 296 (1967).
- 6. Compound $\underline{6b}$ was alternatively convertible to $\underline{1}$ \underline{via} hydrolysis of the ketal followed by urethane formation in only poor yield (20%).

(Received September 6, 1982)